
XMOS Architecture
XC Language

David May



Embedded processing

Post 2000, divergence between emerging market requirements and
trends in silicon design and manufacturing

Electronics becoming fashion-driven with shortening design cycles;
but state-of-the-art chips becoming more expensive and taking longer
to design ...

Concept of a single-chip tiled processor array as a programmable
platform emerged

Importance of I/O - mobile computing, ubiquitous computing, robotics
...

David May
WODET, Seattle, December, 2009 2



The Present

We can build chips with hundreds of processors

We can build computers with millions of processors

We can support concurrent programming in hardware

We can define and build digital systems in software

David May
WODET, Seattle, December, 2009 3



Architecture

Regular, tiled implementation on chips, modules and boards

Scale from 1 to 1000 processors per chip

System interconnect with scalable throughput and low latency

Streamed (virtual circuit) or packetised communications

David May
WODET, Seattle, December, 2009 4



Architecture

High throughput, responsive, input and output

Support compiler optimisation of concurrent programs

Power efficiency - compact programs and data, mobility

Energy efficiency - event driven systems

David May
WODET, Seattle, December, 2009 5



XC

Sequence - like C

Parallel with disjointness checks made by compiler - no race
conditions caused by shared variables

Synchronising channel communication - no race conditions caused
by buffers

Control of non-deterministic events using select and guards
to control communication, input-output and access to shared state

David May
WODET, Seattle, December, 2009 6



XC

Error containment

Array bound checks, array slices

Failed processes stop, preventing propagation of incorrect behaviour
and data

Communication by copying or by moving - and movables have exactly
one owner

David May
WODET, Seattle, December, 2009 7



XC

Timers

Input and Output - ports, clocked ports and timed ports

In conjunction with the XMOS processor, timing of execution and
Input/Output is deterministic

Potential to treat missed deadlines as hard errors

Potential to allocate communication resources to meet throughput
requirements of channels and ports

David May
WODET, Seattle, December, 2009 8



Interconnect

Support multiple bidirectional links for each tile - a 500MHz processor
can support several 100Mbyte/second streams

Scalable bisection bandwidth can be achieved on silicon using
crosspoint switches or multi-stage switches even for hundreds of links.

In systems, low-dimensional grids are more practical.

A set of links can be configured to provide several independent
networks - important for diverse traffic loads - or can be grouped to
increase throughput

David May
WODET, Seattle, December, 2009 9



Interconnect Protocol

Protocol provides control and data tokens; applications optimised
protocols can be implemented in software.

A route is opened by a message header and closed by an
end-of-message token.

The interconnect can then be used under software control to
• establish virtual circuits to stream data or guarantee message

latency
• perform dynamic packet routing by establishing and disconnecting

circuits packet-by-packet.

David May
WODET, Seattle, December, 2009 10



Threads

Each processor provides hardware support for a number of threads,
including:
• a set of registers for each thread
• a scheduler which dynamically selects which thread to execute
• a set of synchronisers for thread synchronisation
• a set of channels for communication with other threads
• a set of ports used for input and output
• a set of timers to control real-time execution

Threads are used for latency hiding or to implement ‘hardware’
functions such as DMA controllers and specialised interfaces

David May
WODET, Seattle, December, 2009 11



Thread Scheduler

The thread scheduler maintains a set of runnable threads, run, from
which it takes instructions in turn.

A thread is not in the run set when:
• it is waiting to synchronise with another thread before continuing

or terminating.
• it has attempted an input but there is no data available.
• it has attempted an output but there is no room for the data.
• it is waiting for one of a number of events.

The processor can power down when all threads are waiting -
event-driven processing

David May
WODET, Seattle, December, 2009 12



Thread Scheduler

Guarantee that each of n threads has 1/n processor cycles.

A chip with 128 processors each able to execute 8 threads can be
used as if it were a chip with 1024 processors each operating at one
eighth of the processor clock rate.

Share a simple unified memory system between the threads in a tile.

Each processor behaves as symmetric multiprocessor with 8
processors sharing a memory with no access collisions and with no
caches needed.

David May
WODET, Seattle, December, 2009 13



Instruction Execution

Each thread has a short instruction buffer sufficient to hold at least
four instructions.

Instructions are issued from the instruction buffers of the runnable
threads in a round-robin manner.

Instruction fetch is performed within the execution pipeline, in the
same way as data access.

If an instruction buffer is empty when an instruction should be issued,
a no-op is issued to fetch the next instruction.

David May
WODET, Seattle, December, 2009 14



Execution pipeline

Simple four stage pipeline:

1 decode reg-write
2 reg-read
3 address ALU1 resource-test
4 read/write/fetch ALU2 resource-access schedule

At most one instruction per thread in the pipeline.

Most no-ops eliminated by compiler instruction scheduling.

David May
WODET, Seattle, December, 2009 15



Concurrency - aim

Fast initiation and termination of threads

Fast barrier synchronisation - ideally one instruction per process

Compiler optimisation using barriers to remove join-fork pairs

Compiler optmisation of sequential programs using multiple threads
(such as splitting an array operation into two concurrent half-size
ones).

David May
WODET, Seattle, December, 2009 16



Join-fork optimisation
while (true)

{ par { in(inchan,a); out(outchan,b) };
par { in(inchan,b); out(outchan,a) }

}

par

{ while (true)

{ in(inchan,a); SYNC c; in(inchan,b); SYNC c }
|| while true

{ out(outchan,b); SYNC c; out(outchan,a); SYNC c }
}

David May
WODET, Seattle, December, 2009 17



Communication
Communication is performed using channels, which provide
bidirectional data transfer between hardware channel ends

The channel ends may be
• in the same processor
• in different processors on the same chip
• in processors on different chips

A channel end can be used as a destination by any number of
threads - server processes can be programmed

The channel end addresses can themselves be communicated

Within a tile, it is possible to use the channels to pass addresses

David May
WODET, Seattle, December, 2009 18



Concurrent Software Components

while (true)

{ par { a :> nextx; b :> nexty; nextr = f(x, y); c <: r };
par { x = nextx; y = nexty; r =nextr }

}

or using moves (::>, <::, ::=):

while (true)

{ par { a ::> nextx; b ::> nexty; nextr = f(x, y); c <:: r };
par { x ::= nextx; y ::= nexty; r ::= nextr }

}

Components can be put together in deterministic concurrent systems.

David May
WODET, Seattle, December, 2009 19



Synchronised communication
Synchronised communication is implemented by the receiver sending
a short acknowledgement message to the sender.

It is impossible to scale interconnect throughput unless
communication is pipelined.

This means that the use of end-to-end synchronisations is minimised;
a compound communication (transaction) achieves this:

transaction inarray(chan in, int data[]; int size)

{ for (int i = 0; i < size; i++)

in :> data[i];

}

David May
WODET, Seattle, December, 2009 20



Ports, Input and Output

Inputs and outputs using ports provide
• direct access to I/O pins
• accesses synchronised with a clock
• accesses timed under program control

An input can be delayed until a specified condition is met
• the time at which the condition is met can be timestamped

The internal timing of input and output program execution is
decoupled from the operation of the input and output interfaces.

David May
WODET, Seattle, December, 2009 21



Ports, Input and Output example
void linkin(port in 0, port in 1, port ack, int &token)

{ int state 0, state 1, state ack;

state 0 = 0; state 1 = 0; state ack = 1; token = 0;

for (int bitcount = 0; bitcount < 10; bitcount++)

{ select

{ case in 0 when pinseq(!state 0) :> state 0 :

token = token>>1

case in 1 when pinseq(!state 1) :> state 1 :

token = (token>>1) | 0x100
};
ack <: state ack; state ack = !state ack

}
}

David May
WODET, Seattle, December, 2009 22



Timed ports example

void uartin(port uin, char &b)

{ int starttime, sampletime;

uin when pinseq(0) :> void @ starttime;

sampletime = starttime + bittime/2;

for (i = 0; i < 8; i++)

{ t := t + bittime; (uin @ t) :> >> b };
uin @ (t + bittime) :> void

}

David May
WODET, Seattle, December, 2009 23



Event-based scheduling

A thread can wait for an event from one of a set of channels, ports or
timers

An entry point is set for each resource; a wait instruction is used to
wait until an event transfers control directly to its associated entry
point

A compiler can optimise repeated event-handling in inner loops - the
threadis effectively operating as a programmable state machine - the
events can often be handled by (very) short instruction sequences

David May
WODET, Seattle, December, 2009 24



Events vs. Interrupts

A thread can be dedicated to handling an individual event or to
responding to multiple events

The data needed to handle each event have been initialised prior to
waiting, and will be instantly available when the event occurs

This is in sharp contrast to an interrupt-based system in which
context must be saved and the interrupt handler context restored prior
to entering it - and the converse when exiting

David May
WODET, Seattle, December, 2009 25



Summary

Concurrent programming can be efficiently supported in hardware
using tiled multicore chips.

They enable systems to be defined and built using software.

Each hardware thread can be used
• to run conventional sequential programs
• as a component of a concurrent computer
• as a hardware emulation engine or input-output controller

Event-driven hardware and software enable energy efficient systems.

David May
WODET, Seattle, December, 2009 26



XMOS XS1-G4

Four tiles 1600 MIPS; 32 processes
Switch 4 links per tile; 16 external links
SRAM 64k bytes per tile
Synchronisers 7 per tile
Timers 10 per tile
Channel ends 32 per tile
Ports 1,4,8,16,32-bit
Links 16 at 400Mbits/second

David May
WODET, Seattle, December, 2009 27



www.xmos.com

David May
WODET, Seattle, December, 2009 28


	
	Embedded processing
	The Present
	Architecture
	Architecture
	XC
	XC
	XC
	Interconnect
	Interconnect Protocol
	Threads
	Thread Scheduler
	Thread Scheduler
	Instruction Execution
	Execution pipeline
	Concurrency - aim
	Join-fork optimisation
	Communication
	Concurrent Software Components
	Synchronised communication
	Ports, Input and Output
	Ports, Input and Output example
	Timed ports example
	Event-based scheduling
	Events vs. Interrupts
	Summary
	XMOS XS1-G4
	
	

